Ring Cleavage Reaction based on Intermolecular Aldol Condensation

Shinji Nagumo, Aki Matsukuma, Fumiko Inoue, Takayoshi Yamamoto, Hiroshi Suemune and Kiyoshi Sakai* *Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812, Japan*

Acetalization of carbonyl groups in cyclic ketones using BF₃-ethylene glycol brought about ring cleavage reactions *via* an intermolecular aldol condensation.

Previously, we reported ring cleavage and reconstruction¹ *via* aldol condensation followed by Grob fragmentation² under acetalization conditions (BF_3 -ethylene glycol). This reaction, based on an intramolecular aldol condensation, prompted us to study intermolecular aldol condensations followed by fragmentation. Reaction of simple cyclic ketones with BF_3 ethylene glycol proceeded as for the intramolecular reaction to afford the ethylene glycol half esters in 30-70% yields (Table 1). Moderate yields were obtained for five- and six-membered rings; with larger rings the yield and the rate of reaction were reduced.

The structures† of the products were established on the basis of spectroscopic data: *e.g.* the 1H NMR spectrum of the product in entry 1 included an unsaturated proton signal at *6* 5.33 (lH, m), and signals due to the ethylene glycol half ester at δ 3.82 (2H, m, CH₂O) and 4.22 (2H, m, CO₂CH₂). The IR [Ymax/Cm-l 3400 (OH) and 1700 (ester)] and mass spectra *[mlz* $212 (M⁺)$] also supported this structure. Scheme 1 shows a tentative reaction mechanism.

As a further application of this reaction, we studied ring cleavage reactions based on a crossed intermolecular aldol condensation using cyclopentanone as the enolate donor and substituted benzaldehydes as the enolate acceptor. In accord with our expectation, crossed aldol condensation and subsequent ring cleavage occurred to afford the *trans* ethylene

Table 1 Ring cleavage-aldol condensation^a

 a A mixture of the cyclic ketone and $BF_3·Et_2O$ (7 equiv.) in CH_2Cl_2 was stirred at 0° C for 3-5 h under Ar atmosphere, then ethylene glycol (5 equiv.) was added and the mixture stirred for 2-3 h (150 h **for** entry 4) at room temp.

t Each product was obtained **as** a colourless oil. Selected spectroscopic data of representative products. Table 1, entry 2: v_{max}/cm^{-1} (neat) 3450, 1740 and 1660 cm⁻¹; ¹H NMR (CDCl₃) δ 3.84 (2H, m, $CH₂O$), 4.22 (2H, m, $CO₂CH₂$) and 5.37 (1H, m, =CH-); ¹³C NMR $(CH₂O)$, 37.9, 34.2, 28.8, 28.3, 27.3, 25.3, 25.0, 23.1, 22.6 (all CH₂); *mlz* 240 *(M+)*, 179, 149 and 95. Table 2, entry 2: $v_{\text{max}}/\text{cm}^{-1}$ (neat) 3450, 1730, 1600 and 1490 cm-1; 1H NMR (CDCI3) 6 3.76-3.84 (5H, m, CH₃O, CH₂O), 4.15-4.24 (2H, m, CO₂CH₂), 6.07-6.23 (1H, dt, *JIHZ* 15.8,6.0, =CH-) and 6.65-7.43 (5H, m, -CH=, ArH); 13C NMR $(ArCH)$, 120.7 (=CH-), 110.9 (=CH-), 66.0 (CH₂O), 61.3 (CH₂O), 55.5 (OCH3), 33.5, 32.8 and 24.6 (CH2); *mlz* 264,202, 160 and 147. $(C\overline{DCl}_3)$ δ 174.2 (CO) , 137.7 (=C-), 120.9 (=CH-), 65.9 (CH₂O), 61.4 $(CDC1_3)$ δ 174.0 (CO) , 156.4 (=C- \times 2), 130.1, 128.1, 126.5, 125.6

glycol half esters; the cis-isomers were not detected (Table 2). \ddagger The structures \dagger were determined from spectroscopic data, as exemplified by the product in entry 1. The ¹H NMR spectrum showed ethylene glycol half ester signals at 6 3.81 (2H, m, CH₂O) and 4.21 (2H, m, CH₂OCO), and *trans*unsaturated proton signals at δ 6.15 (1H, dt, *J*/Hz 15.9, 6.1) and 6.42 (1H, d, *J*/Hz 15.9); v_{max}/cm^{-1} 3400 (OH), 1730 (ester), and 1640 (aromatic); *m/z* 234 *(M+).* **As** shown in Table 2, except for entry 2, electron-releasing functions **Example and Kiyoshi Sakai***
 Example 30
 Example

Table 2 Crossed aldol condensation^a

a A mixture of the aldehyde, $BF_3 \cdot Et_2O$ (3 equiv.) and cyclopentanone (1 equiv.) in CH_2Cl_2 was stirred at 0°C for 3-5 h under Ar, then ethylene glycol *(5* equiv.) was added and the mixture stirred **for** 15-20 h at room temp. Substrates were not recovered, and unidentified polymers were obtained.

 \ddagger It is not clear whether the *trans*-isomer was formed directly or cis-trans-isomerisation occurred under the conditions used.

resulted in poor yields, possibly owing to the instability of the intermediary aldol, which may be readily dehydrated to the enone **(B)§** because of the participation **of** the electronreleasing function. It is likely that the intermediate from o-methoxybenzaldehyde (entry **2)** would be stabilized by the

*^Q*Structures **(B)** and **(C)** were supported by spectroscopic data.

formation of an intramolecular hydrogen bond [structure **(A)]** and undergo acetalization followed by Grob fragmentation. It is noteworthy that *0-, m-* or p-nitrobenzaldehydes afforded only the acetal **(C),5** and ring cleavage was not observed at all. Based on the hard-soft acid-base concept, ethylene glycol is a hard base and enol carbon atoms soft. The carbonyl carbon of benzaldehyde is considered to be softer than the normally hard carbonyl function, because of resonance effects. Thus, the intermolecular aldol condensation of cyclopentanone and benzaldehyde proceed to induce the fragmentation *via* acetalization. In contrast, the carbonyl carbon of nitrobenzaldehyde seems to be harder, and prefers the formation of the acetal to the aldol condensation.

Received, 11th June 1990; Com. 0102596H

References

- 1 **M.** Tanaka, **H.** Suemune and K. Sakai, *Tetrahedron Lett.,* 1988,29, 1733; Y. Miyao, **M.** Tanaka, H. Suemune and K. Sakai, *J. Chem.* **SOC.,** *Chem. Commun.,* 1989, 1535; **H.** Suemune, **K.** Oda and K. Sakai, *Tetrahedron Lett.,* 1987,28,3373; **S.** Nagumo, H. Suemune **and** K. Sakai, *Tetrahedron Lett.,* 1988, *29,* 6927.
- 2 C. **A.** Grob, *Angew. Chem., Int. Ed. Engl.,* 1967,6,1; 1969,8,535.